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Many deep learning algorithms are trained/evaluated in a centralized learning framework.

Collected training dataDeep learning model
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However, real-world data cannot be collected on a central server in many cases.
Mainly due to the Data Privacy issue.

Collected training dataDeep learning model

❌
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However, real-world data cannot be collected on a central server in many cases.
Sometimes, due to the Computation Complexity.

Collected training dataDeep learning model

❌



Motivation:�Learning�on�Distributed�Clients

7

Let us consider a distributed environment where training data is on edges (or clients).

Central server

Condition 1: The model is on the server.

Condition 2: 
The server and edges can communicate.

Condition 3:
Data stays on 
the edges.
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Let us consider a distributed environment where training data is on edges (or clients).

Central server

Condition 1: The model is on the server.

Condition 2: 
The server and edges can communicate.

Condition 3:
Data stays on 
the edges.

How can we train the model for the data samples 
that is distributed on edges? 🤔



Motivation:�Learning�on�Distributed�Clients

9

Let us consider a distributed environment where training data is on edges (or clients).

Central server

Condition 1: The model is on the server.

Condition 2: 
The server and edges can communicate.

Condition 3:
Data stays on 
the edges.

Training data is used to optimize the learnable parameters in models.
Then what we need to train our model is Gradients (not data itself)
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Let us consider a distributed environment where training data is on edges (or clients).

Central server

Condition 1: The model is on the server.

Condition 2: 
The server and edges can communicate.

Condition 3:
Data stays on 
the edges.

Strategy:
✅ Let the training data stay on local edges

✅ Send the model to the local edges to compute gradients by themselves.
✅ Retrieve the gradients (or the updated model) to the server
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Federated�Averaging�of�Models�[FedAvg’17]

Central server

Step 1: Transmit the model from the server to all edges

[FedAvg’17] H. B. McMahan et al., “Communication-Efficient Learning of Deep Networks from Decentralized Data,” AISTATS 2017
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Federated�Averaging�of�Models�[FedAvg’17]

Central server

Step 2: Update the model by processing local data (or compute gradients)
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Federated�Averaging�of�Models�[FedAvg’17]

Central server

Step 3: Send back the updated model to the server

[FedAvg’17] H. B. McMahan et al., “Communication-Efficient Learning of Deep Networks from Decentralized Data,” AISTATS 2017
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Central server

Step 4: Merge the updated models to obtain a global model (e.g., averaging)
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[FedAvg’17] H. B. McMahan et al., “Communication-Efficient Learning of Deep Networks from Decentralized Data,” AISTATS 2017
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Central server

Step 5: Repeat step 1-4, until the model converges
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[FedAvg’17] H. B. McMahan et al., “Communication-Efficient Learning of Deep Networks from Decentralized Data,” AISTATS 2017



Federated�Averaging�of�Models�[FedAvg’17]

Centralized training:

Learning on
Distributed Clients:

[FedAvg’17] H. B. McMahan et al., “Communication-Efficient Learning of Deep Networks from Decentralized Data,” AISTATS 2017
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Centralized training:

Learning on
Distributed Clients:

Rather than accessing private data,
just collect locally updated model parameters or gradients 

to train a global model

NOT collecting exact data 
BUT collect models that have learned the data!



Federated�Averaging�of�Models�[FedAvg’17]
Pseudocode of FedAvg (taken from [FedAvg’17])

[FedAvg’17] H. B. McMahan et al., “Communication-Efficient Learning of Deep Networks from Decentralized Data,” AISTATS 2017

In addition, FedAvg considers some realistic settings:
✅ Active clients - not all clients participate in training (𝐶-ratio)

✅ Local computation - local client processes 𝐵-size local minibatch
- Local client trains 𝐸 local epoch

✅ Data distribution (IID or non-IID)
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Federated�Averaging�of�Models�[FedAvg’17]

[FedAvg’17] H. B. McMahan et al., “Communication-Efficient Learning of Deep Networks from Decentralized Data,” AISTATS 2017

In addition, FedAvg considers some realistic settings:

✅ Data distribution (IID or non-IID)

IID case: data distribution on clients are IID
i.e., shuffle all images and partitioned them into clients

non-IID case: data distribution on clients are IID,
i.e., for each digit shuffle images and partition 
them into two shards, then each client selects two 
shards among all.
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Client 2Client 1
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[FedAvg’17] H. B. McMahan et al., “Communication-Efficient Learning of Deep Networks from Decentralized Data,” AISTATS 2017

Taken from [FedAvg’17]

FedAvg achieves a converging global model without collecting the local 
data samples (The test is done by the global model).

𝐶 = 0.1, i.e.,
10% of clients are 
active in each round.



II. Challenges of Federated Learning
- Heterogeneous FL, Personalization FL, Deep Leakage of FL



Federated�Averaging�on�Heterogeneous�Settings

When data distribution is non-IID, we have heterogeneity of data distribution.

In the work of FedAvg, authors consider a simple non-IID case.
However, a stronger heterogeneity can be introduced.

Many articles reported that 
the strong heterogeneity hinders the convergence of FedAvg.

When local data is heterogenous, then the local gradients probably diverge.
It will hinder the fast convergence of FedAvg.
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Federated�Averaging�on�Heterogeneous�Settings

In [ArXiv’18], significant performance degradation is observed for non-IID settings.
Here, non-IID(k) indicates that each client contains k-class images.

[ArXiv’18] Y. Zhao et al., “Federated Learning with Non-IID Data,” arXiv 2018. KWS: keyword spotting dataset

Taken from [ArXiv’18]
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Federated�Averaging�on�Heterogeneous�Settings

In [T-NNLS’20], authors also point out that FedAvg suffers from non-IID settings.

[T-NNLS’20] Y. Zhao et al., “Federated Learning with Non-IID Data,” arXiv 2018. KWS: keyword spotting dataset

Taken from 
[T-NNLS’20]
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Convergence�FedAvg�[ICLR’20]��

In [ICLR’20], the convergence of FedAvg on non-IID is theoretically analyzed.

In summary, the convergence rate of FedAvg on non-IID is                .

𝑇 means the total updates processed by clients.

Main contribution of [ICLR’20]:

[ICLR’20] X. Li et al., “On the Convergence of FedAvg on Non-IID Data,” ICLR 2020.

𝜖: precision (lower means converging to the optimal)
𝐸: updates done by each client per round.
𝑇/𝐸: total communication rounds 26



Convergence�FedAvg�[ICLR’20]��

Main contribution of [ICLR’20]:

[ICLR’20] X. Li et al., “On the Convergence of FedAvg on Non-IID Data,” ICLR 2020.

𝜖: precision (lower means converging to the optimal)
𝐸: updates processed by each client per round.
𝑇/𝐸: total communication rounds
Γ: a term quantifying the degree of non-IID

The minima of averaged loss The average of local minima of loss
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Personalized�Federated�Learning

Personalized federated learning is to provide local model for each client by 
federating the updates from all clients.

By leveraging the knowledge across clients, 
let us train strong local models.

Federation across clients Client-specific model
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Personalized�FL�with�Hypernetworks�[pFedHN’21]

pFedHN of [pFedHN’21] trains hypernetworks through the federation across clients.
The FL-based hypernetworks are trained to generate local model weights.

Hypernetwork

Hypernetwork returns the local model 
parameters (𝜃!).

The hypernetwork is updated through the 
gradients from locals.

Client-specific 
representation vector

[pFedHN’21] A. Shamsian et al., “Personalized Federated Learning using Hypernetworks,” ICML 2021.
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Personalized�FL�with�Meta-Learning�[Per-FedAvg’20]

The strong ability for adaptation from meta-learning can be used for PFL.
In Per-FedAvg, Model-agnostic meta-learner (MAML) adopts few-shot-based finetuning 

for building local model from the federated global model.

Global model for initialization 𝑓!
Compute meta-updates:

[Per-FedAvg’20] A. Fallah et al., “Personalized Federated Learning with Theoretical Guarantees: A Model-Agnostic Meta-Learning 
Approach,” NeurIPS 2020.

∇!.
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ℒ" 𝑓!!

𝜃! ← 𝜃 − 𝜂ℒ! 𝑓"

Local finetuning

𝜃# ← 𝜃 − 𝜂ℒ# 𝑓"

Local finetuning

𝜃$ ← 𝜃 − 𝜂ℒ$ 𝑓"

Local finetuning

𝜃
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Deep�Leakage�from�Gradients�[NeurIPS’19]

FedAvg relies on the belief that private data cannot be reconstructed from its gradients.
However, it is shown that gradients can be used to reconstruct original images.

By optimizing the dummy images to show a similar gradient to the original one,
server can reconstruct original images.

[NeurIPS’19] L. Zhu et al., “Deep Leakage from Gradients,” NeurIPS 2019.

Figures taken from [NeurIPS’19]
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III. Conclusions
- Federated Learning in Real-World Settings



Conclusions
§ Remaining Challenges of FL
• Handling data & model Heterogeneities across clients

• Balancing between global and local optimization
• Difference in model architecture across clients

• Model splitting for better efficiency
• Splitting model architecture into server/edge sides

• Dynamic system variations
• Federated learning on dynamic systems (structured and dynamic server-edge environment)

• Robustness to adversarial attacks
• Preventing deep leakage from gradients
• Robustness to contaminated gradients from compromised nodes
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